Model Selection and Model Averaging / Gerda Claeskens, Nils Lid Hjort

Choosing a model is central to all statistical work with data. We have seen rapid advances in model fitting and in the theoretical understanding of model selection, yet this book is the first to synthesize research and practice from this active field. Model choice criteria are explained, discussed a...

Descripción completa

Autor principal: Claeskens, Gerda, (1973-)
Otros autores: Hjort, Nils Lid
Formato: Libro
Publicación: Cambridge, United Kingdom : Cambridge University Press, 2008
Descripción física: XVII, 312 p. ; 26 cm
Clasificación CDU: 519.2
* 519.2
Tipo de contenido: Texto (visual)
Tipo de medio: sin mediación
Tipo de soporte: volumen
Sumario: Choosing a model is central to all statistical work with data. We have seen rapid advances in model fitting and in the theoretical understanding of model selection, yet this book is the first to synthesize research and practice from this active field. Model choice criteria are explained, discussed and compared, including the AIC, BIC, DIC and FIC. The uncertainties involved with model selection are tackled with discussions of frequent and Bayesian methods; model averaging schemes are presented.
Colección: Cambridge series in statistical and probabilistic mathematics
Materias:
Cursos: Máster Universitario en Métodos de Investigación en Ciencias Económicas y Empresariales - Curso 1- Modelización
ISBN: 9780521852258 (hardback)
LEADER 01676nam a2200337 i 4500
001 000000094923
003 CaOOAMICUS
005 20141111162913.0
008 141020s2008 xxka 000 0 eng c
020 |a 9780521852258 (hardback) 
040 |a ULA  |b spa 
080 |a 519.2 
080 |a * 519.2 
100 1 |a Claeskens, Gerda,  |d 1973- 
245 1 0 |a Model Selection and Model Averaging /  |c Gerda Claeskens, Nils Lid Hjort 
260 |a Cambridge, United Kingdom  |b Cambridge University Press  |c 2008 
300 |a XVII, 312 p. ;  |c 26 cm 
336 |a Texto (visual) 
337 |a sin mediación 
338 |a volumen 
490 0 |a Cambridge series in statistical and probabilistic mathematics 
520 |a Choosing a model is central to all statistical work with data. We have seen rapid advances in model fitting and in the theoretical understanding of model selection, yet this book is the first to synthesize research and practice from this active field. Model choice criteria are explained, discussed and compared, including the AIC, BIC, DIC and FIC. The uncertainties involved with model selection are tackled with discussions of frequent and Bayesian methods; model averaging schemes are presented. 
650 1 7 |a Estadística Bayesiana  |2 ULA 
650 1 7 |a Modelos matemáticos  |2 ULA 
650 1 7 |a Estadística matemática  |2 ULA 
700 1 |a Hjort, Nils Lid 
830 0 |a Cambridge series in statistical and probabilistic mathematics 
850 |a ULA 
901 |a Máster Universitario en Métodos de Investigación en Ciencias Económicas y Empresariales - Curso 1- Modelización 
904 |a 1213  |b 7  |c Disponibilidad  |d Fecha  |t 101754  |j 519.2 CLA mod 
990 |a emil